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The Fishery Conservation and Management Act of 1976 (FCMA),
or Public Law 94-265, was paﬁsed by Congress to prevent future over—
exploitation and overcapitalization in the fishing industry, as well as
to develop underutilized fisheries to help meet the expected future
increase in demand for fish products. The FCMA creates eight regional
fishery manégem;mt councils (hereafter just called the councils) to
develop management plans for the fisheries within their jurisdi;tion.
The councils are required to determine the "optimum yield” (0Y), to

allocate the yield between foreign and domestic users, and to suballocate

within these groups, ) -

froen e

As described in the FCMA, OY implies management for a variety
of objectives. A management plan must include biological, recreational,

economic, and social goals in determining OY and how the yield is allocated

P"‘""']r'-""_‘

For most fisheries;'the optimum levels for all the objective considered

separately are In conflict, so that one task of the councils is to

F_""I .

develop procedures to find an optimum among multiple, conflicting objectives.

=

" In practice, this may mean'developing several complementary techniqggs.
A first step might be to find the utility functions for each of the
interest groﬁpa, a procedure demonstrate&;by Keeney (1977) for managing
salmon on the Skeena River. Then, given the resultiug, conflicting
utility functiﬁns, a second step might be to calculate the set of
Yefficient” or "Pareto optimal" policies, in order to reduce the number
of policies the council need consider. Finally a bargaining proéedure
or other Interactive method might be develdped for the council to decide

on one final plan.
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Research in several of ﬁhese areas 1s being conductedtby the
Honolulu Laboratory, National Marine Fisheries Service, and by tﬁe
Western Pacific Regional Fishery Management Council. In this paper T
present results for the second step of the process described above. The
set of efficient or Pareto optimal policies is described for a class of
dynamic, stochaétic harvesting models relevant to fisheries management.
Further, an extension of the usual dyhamic programming formulation that
allows a vector-valued return function rathef than thé usual real value
return function. _:

I have shown previously (Mendelssohn '19;769.,, 1976b, 1977;
Mendelssohn and Sobel 1977) that dynamié; stdéﬁasﬁic.harvesting models
are highly structured capital acéumnlation mb&e1§ Eha£ poééess a highly
structured optimal policy function. Similar étfucture'in.the vector
maximization problem makes it possible to dedéribe_the set of efficient
pﬁlicies solely from knowing the single objective op£1m31 policy functions.

Also, I show that it is possible to obtain readily several points of

interest within the efficient set.

-

Let the k-vector J* be the optimum optimorum vector, and let
the k-vaector J be the expected return from a given policy. That iﬁ,
J*i is the expected return for objective i when it is the sole objective
and an optimal policy is followed. Ji is the expected return to
objective i following some (any) policy.

The "p-regret function" Rp(J) is defined as:

K /p
R ={ £ (- NHE p <
P $=1




3

where it is convenient to let Bw(J) = maximum (J="=:L - Ji). It is desired
i

to find the feasible return vector J that minimizes RP(J) for different
values of p. I consider the case p - 1, or total group regret, and

p = =, the Chebyshev problem. A third criterion of interest is the
‘policy that is oééimal for a convex combination of the krObjECtiVB
functions using %-for the weights. T refér to this as the "equitable"
policy. The dynamic, stochastic models considered in this paper have
the interésting property that a policy which is equitable also is

Chebyshev optimal and minimjzes the total regret.

II. Notation and Development )

' 'Dqu;ibing a chtqr—falue¢ Btochastié model requires a great
deal 6f_nq;atiqg;:w$ye gl&gsgry_at the end contains a complet%-list.of
_ the no;gtipn'ﬁgéd. Ag_yuﬁh_as.pqssible the notation is consistent with 
andelaaohﬁ (19765)_0: Mendelé§ohn ap&_quel (1977), since the results
presented here rely on tﬁe single-objective ﬁethods in thése pépers.
: — |
Thg fishery ié being managed for a plamning horizon of T pefiods,
T <=, The perj.odﬁ afe aubscriptéd byt 1<t <T. Alternately, |
n=T-t + 1, the mmber of periods remainiang in the planning, is used

as the subscript. The infinite horizon problem can be treated by allowing

n to approach infinity. At the beginning of each period an initial

stock size X, is observed, with x € X, the set of possible stock sizes.
. }
?he stock is harvested by j user groups, and each group catches Zi,

1 _
i=1, «aay J during period t. Let the j-vector zt = (zt, sney zi) be the
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vector of the j catches during period t. The stock size in peri%d t+1

) o \
is assumed to be a random function s[*, *] of the stock left after

harvesting has ceased, that is:
3 i

where Dl, DZ’ sewsy DT are independent, identically distributed random
variables dist:ibuted as thé generic random variable D.

For a given stock éize and harvest yécfor (x, 2), each of
the j users has a one ﬁeriod return given by the real-valued function
gi(g, z). There may be k ~ j > 0O other groups that have an interest in
how the stock is managed. Their one perilod returns are denoted by |

gi(x, 2), i=3j+1, ..., k. Let the k-vector G (x, 2) = (gl(x, BYy sasy
t t _ t

g:(x, 2)). The natural constraints on the pfoblan are:

(2.2)
i b
o %t 20 i=1, ..0p ] for all t

For a k-vector valued function G with components gi, i=1,
..+, k a policy 2* (resp. a return vector J*) is termed "efficient " or

undominated if there is no other feasible policy (resp. no other

feasible return J) satisfying:
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G(x, ) z,G(i, 3*)1! (2.3)

That is, a policy is efficient if there is mo other feasible policy
that does at least as well in k-1 of the objectives and strictly
petter in the k°" objective.

For an_:;' k-vector valued function G(x, 8), let X be the set
of all possible states, Z(x) the set of feasible decisions at ¢ € X,
and C = {(x, ) t x€X; 2 E z(x)}. Let A be the set of efficient return
vectors of G for(x, z) € C, and § the set of € such that (=, z) € C.
pefine the operator vmax as a map from § + A, that is it maps the set of
feasible vector returns into the set of efficient vector returns. Any
G(x, %) € A implies a gubset of C such that (%, z) is an element of the
subset if and only if G(x, 3) e A.. At times I use the slightly abused
notation of having vmax map C into its efficient subset. The use,
however, should 1;3 clear frqm the context. '
For the dynamic probl; let E denote the expectation operator:'.

~ Then the problem of finding the set of efficient policies can be

expressed as: )

T B
vmax Ef Z G .(x_, 2 )) _ ' (2.4)
_ (t'-‘l t. t t .

gubject tO (2.1), (2.2)

-]'-,When comparing two k-vectors x and jr, x>y implies xi z yl for

all i; x > y implies X 2 ybutx Fy:s x>y implies xi > yi for all i.
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A history Ht is a feasible sequence of states, decisioﬁa, and

random variables up to time t, that is:

Ht = {xl’ 2ys Dl; Xg» B DZ; R L Zen1? Dt-l; xr.}

:‘ By a policy, I mean a function which for each period and all possible
histories describes what decision to make. Let Vt(ﬁlﬂt) be the expecfed
value of the k objectives when history Ht has been observed, and the.
possibly npnstatinnary policy 6 is followéd for the remainder of the
planning horizom.

Theorem 1 1s the central mathematiéal fﬁeoran in this paper.
Results along the same lines certainly éré'iﬁbliéiﬁ in Sobgl (1975, |
1977); however, I know of no other referenée ﬁhe}enthe dynamic
programming problem is expanded to treat the fectof ﬁaximmm problem
exactly as it is here. The proof, and the proofs.of all results in

this paper, can be found in the Appendix.

Theorem 2.1 For problem (2.4}

-~

i) A policy is efficient from period 1 if it is8 effictent from pertod t
omwards, for all ¢ < T.

i1} An efficient policy only depends on the past history H, through the
present state T : that is, the expected value of a possibly non-

stationary policy § given Hy satisfies:

v (8|H,) = Vt_(él:ct.l

for all He 8, and t.
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ComZZaﬁy 2,1 ILet f;ff(:c) be defined as equal to Vn(ﬁlzc)
for some (any) efficient policy 8. Then 3 is an efficient decision
for state x in period n if and omly if it is undominated for the

k-veetor valued function given by:

G, (z, &) + EfT (afz - 12::37‘, au
0

££f

If we modify f: to be the set of efficient vector returns,

eff

and have G + E f
n-1

denote the set of values given by the value of G
plus the value of each element in the setIEf:fi, then corollary 2.1
leads to the multiobjective extension of dynamic programming, which

can be fqrmulated as:

eff(.) =0

fo
f:ff(x) = vmax -{Gn(x,' &) + E£5F (slx ~ izi, d])}

To describe the set of dynamic efficient policies, i£ becomes
only necessary to describe the set of efficient actions in period n:h’
givén the.state x. This point to set mapping is the equivalent of the
usual.optimal policy function in single objective dymamic programming.
Given that a.decision 2 1s efficient in perliod n, the set of resulting
efficient policies is to.chodse.ggz efficient action in the following

pe:iods.

3
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A closely related problém is:

e

T k i1 ]
maximize EJ = E L I A gt(st’ St) |
t=1 i=1

(2.5)
k

subject to I A
' i=1

Lo, 0<at <15 ), 2.2y

From standard dynamic programming arguments, a solution to (2.5)

satisfies the system of recursive equations:

A
£,

il
=]

(2.6)
max

£.00 = 0<Z zi_<_'x

{Jz:(x, 2)}

A k 11 A 1
where Jn(x,. z) = .Elh g (x, 2) + Efn—l (s'[x - L2, dl)
If each of .the gi are concave, equation (2.6) and corollary
2.1 imply that there exist efficient policies which change the.weighting
factors li between periods. At first glancé policies of this form may
appear to be of little interest. However, the desirability of policies
that have changing implied weightings can occur for several reascns.
First, given the actual réalization of the random process, the actual
returns may be very different from the expected returms. Certain
objectives may be more sensitive to this variation, and changing to a

different implied weighting may compensate for this.
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Second, experience may teach us that what we thought we
preferred is not what we actually preferred. That dynanic efficient
policies exist that change the weightings with time allows us to
change preferences as we learn about the system. Rather than being.
uninteresting, corollary 2.1 tells us that we can switch the implied
weighting mi@stream and still have an efficignt policy for the whole

planning horizon. This flexibility seems desirable.

Finally, for a real function of one-argument, £~ denotes the
derivative of (f: R-R) énd Vf denotes the gradient vector. For a
function of two arguments fll] denotes the gradient with respect to the
first vector, and flz] the gradient with respect to the second vector.
de 1 21t

£, £ , £ denote the ith component of the vector. At’times, one-
sided or directional derivatives are appropriate; however, I feel these

are clear from the context.

III. Result

A. Single decision variable

in some fisheries, only one of the groups interested in‘the
stock actually harvest it. For example, the northern anchovy (Enggéulis
mordax Girard) is exploited by a reduction fishery, which uses the anchovy
mainly for meal. However, the northern anchovy is consldered an
&mportant food sOurce'for several importanﬁ sport fish. Recreational
gishing associations have expressed a stiong interest in how the fishery
is managed. The government has its own goals-——both to insure the

health of the stock and of the industry given a population that exhibits

large natural fluctuations.
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T derive results for the bicriterion case, and then show
X i
that similar results are valid for k > 2. I assume hereafter (unless
otherwise stated) that st[-, »] is a stationary function, and that Gt

depends on time only through a discount factor @, 0<a<1l. That is
Gt(x, z2) = G.t-lc(x, 2)

1 assume that the one period return ( or utility) for each
interest group depends only on the allowable catch, and that the
foliowing assumptions on gi are valid for each user i:

(i) gi(-) is concave and continuous on the set C = {(x, z): xE:-X; Oizix}
(i1) gi(') is nondecreasing; giJ(-) < w
(iii)=gi(°) is uniformly bounded from below
and I assume for the transition function si-, -]“fhat:
(iv) s[*, d] is concave and continuous for each fixed value d on the set
Y-u

AsSuﬁptions (1)-(iv) are discussed in greater detail in
Mendelssohn (1976b) or Mendelssohn and Sobel (1977). If the démand_hf
curve is such that per unit price (benefit) is nonincreasing with total
supply, then p(z) + z, the total value of the harveat satisfies
assumptions (i)-(iii). Also, if the preference structure of a decision~
maker is additive and risk-adverse, or multiplicative such that thg log
of the utility is risk-adverse, then the utility function determined By

that preference structure satisfies (1)-(iii1) (see Keeney 1974 for a

complete discussion of conditions that generate utilities with these

forms).
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Assumption (iv) is satisfied by many production models. I
believe that if s{x - z, d] = ds[x - z] then it is sufficient that s[+] be
pseudoconcave, ﬁhich would include a more general class of production

models. However, except for the linear returns case, I have not been

able to prove this. - N _

. As described, the problem does‘not include allocation, but
rather involves groups with differing valuations of the work of an
allowed catch in any pericd. Often problems stated in someﬁhat different
te?ms from ﬁy #asumptions can be put into this form. For example, the
Sport Fishing Imstitute (SFI) has called for a based stock policy to
manage the northern anchovy. They prefer that the industry catch be set
at 10 of the surplus over a fixed size spawning populatioﬁ, or else
zero. It follows from the single objective results in Mendeissohn (1976b)
or th&elssohn and Sobel (1977) that this policy is optimal for some
re:urn.function gatisfying assumptions (1)-(iif). Aséumption (iv) can
be found in MacCall (1976) or Mandell (1975). Other conservationed
aimed objectives can often Be put into a form satisfying assumptions-
(i)-(1ii) by carefully choosing the objective fﬁnction.

Theorem 3.1 is the main result for this model. It states that

knowledge of the single-objective optimal policy functions is sufficient
to calculate the set of Pareto optimal policies. Let zt (x)(zi-(x)) be

the optimal policy functions when objective one (two) is the sole

objective being considered.
3
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Theorem 3.1 For problem .. . (2.4), let k = 2, § = 1. For

1 2
fired z, assume z: (z}, z:: (x) are knoum for the two single objective
| I *2
problems, with z (x) < 2, (x). Then:
i) A decision = is an element of a Paveto optimal policy if and only
o * |
if z is contained in the set {z |.3,', (x) <z <z (x)}

i{i) The set of Pareto optimal policies for each nand x € X i8 to

choose a z as in (i) and any Pareto apﬁ‘maz policy in period n - 1.

A conclusion from theorem 3. 1 is l:hat the wider the disagreement
among the users, the greater the number of Pareto optimal policies. This
makes it all the more important to find a smaller number of policies

that have other desgirable properties. One such policy‘might be to choose

x1 2
z = 1/2(z' (x) + z (%)), the halfway point between the two desired

policies. Other policies, as mentioned in section I, are ones that are
equitable, Chebyshev optimal and minimize the total group regret.

Theorem 3.2 relates these policies.

Theorem 3.2 Under the assumption of theorem 3.1, there exisis
an equitable policy that aleo minimizes the total regret and minimizes

the maximum regret.

1
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Only rarely will this policy be equivalent to choosing

* *
z = 1/2(zi (x) + zi (x)). These two policies certainly seem to be
reasonable starting points for any "bargaining" procedﬁre to determine
a final policy.*’
So far the results have been limited to two objectives.
, , .
However, corollary 3.122) states that the results are equally valid

*
for k > 2. Again, let zi_(x) be the optimal policy function when

objective 1 is the only objective considered.

Comllary 3.1 " The results of theorem 3.1, with k > 2
' s : H

and zi {x) = Im;n::m;nk- {z:; (x)} and zi (x) = ma.'c{a:; (z)} are valid,

and theorem 3.2 remains correct as stated. .

0

It should be noted that iﬁ using the regret functions (or
even weighting) I tacitly assumed all of the objective functions are
on an equivalent scale. The results are valid if they are not, butn‘,
the 1nterpretatioﬁ becomes clouded. Such metrics are always affeéted
most by the largest return with the largest spread (greater rates of
change) and without proper-wéighting will not have any intuitive

notion of fairmess.

B. Allocating catch smong users

In the last section, there was only one user of the resource,
and the conflict was aver how large a catch should be allowed that user.

A second common problem is where there are several users of the resource.




A policy must decid

that catch. The pr

Consider
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e both total allowable catch and the allocation of

oblem is a dynamic allocation model.

first the two user, two objective case, that is

j=k=2. 1 assume that the one period return to each user depends

only on the catch allotted to that user, and that gi(-) satisfies

assumption (i)-(iii) for each i, and that the transition function satisfies -

assumption (iv).

The set o©

f Pareto optimai policies cau be defined by knowing

three relatively simple fumctions. First, I assume that the single

»

objective optimal policy functions, 2z (x) and z2 (x) are known. Second,

'T assume that the curve (as a function of A) where Ag (z ) = (1- l)g (z )

is konown on the (zlf z ) coordinates. For each A the solution (21, z2)

to the equality is

the point where the weighted price (derivative) to

the one user just equals the weighted price to the other user, so that

a small loss to the one is just offset by the gain to the other. If the

problem was not dynamic, the curve defined by kgl (zl) a (1 --_l)g2 (zz)

would clearly defin
dynamic policy shou

single objective op

is in fact the case

e all efficient Solutions.llt is appealing that the

1d also be related to this curve, as well as to the

timal policy functioms. Theorem 3.3 states that this

-
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Theovem 3.3 Assume in (2.4) that § = k = 2, that g"(z)

depends on z only through 2", that assumptions (i)-(iv) are valid,
' & 4

2

and that the two single objective policy functions zi: (), 2,

(z)

are knoum. Then:

i) For each n, and x € X, there is a Pareto optimal policy for z such
' *

= ok
that » ie contained in the set {z | z;‘; {x) izl + 22 iai (z)}
4 *

assuning 2. (z) < =2 ().

i1) Bach of these policies is equivalent to a point on the curve (as A

varies) where J\g‘I (31) = (1 - l)gz (32) on the interval
1* 2* |
[z, {x), z, {z)] or else is at an end point of the interval.

- a»

i{it) A Pareto optimal policy ig to choose z as in (i) and any Pareto
optimal policy for the state in period n - 1.
’ O
Asg in the last section, t;he greater the conflict between the
two single objective policies, the 1arger-the set of Pareto optimal

policies. Again, are there certain policies that can be selected-frqm-

=L

the set that are prime candidates? Some such policies are any Pareto

1 2 1, 2 ., 1 *
policy such that z° = z°. Of these, the one where z +z -1./2(2n

* :
(x) +zrz1 (x!

is a reasonable policy. Corollary 3.3 relates the three policies that ,

i
I have been concerned with-—the equitable policy, the policy that minimizes

the maximum regret, and the policy that minimizes the total regret.
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Corollary 3.3 Let z be the Pareto optimal policy related to

the weighting A = 1/2. Then:
) 2z minimizes the maximem regret,

i1) z minimizes the total regret.
0J

Again,.a single policy has'all three characteristiﬁs, which
would make it a good starting point for any fﬁrther debate.

It might be suspected that theorem 3.3 and corollary 3.3 do
not depend on the assumption j = k = 2. Corollary 3.4 states that

this is in fact so.

i Corollary 3.4 If in theorem 3.3 (corollary 3.3) all the
* R
(x), 3&: (x)

assumptions are valid expect k > 2; k > j > 2, and let 331
be respectively the minimum and maximum of the k single objective policy
function, then the theorem (corollary) is true as stc;ted.

O

Theorem 3.3 1s probably more approprilate for coatrolling
gseveral user groups, than for allocating cateh to individual boats.
If allocation is being done between boats, the upper limit would not
be Xy s the initial population size, but rather a series of constfaints
that depend on the boat capacities. However, the proof of theorem 3.3-
depends only on concavity assumptions and simple upper and lower bounds.
When allocating between boats there is a similar result, which modifies

theorem 3.3 depending on whether the single objective optimal policy
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functions are being constrained by thg capacity of the boat (i.e., the
boat would like to catch more but cannot) or that the opfimal catch is
at some other level. In this instance, there may be Pareto optimal
policies where each (some) boats may catch their total capacity.

Fishery management is often based on fishing effort rather
than on catch'(;ee Beverton and Holt 1957; or Rothschild 1972 for a
discussion and definitions of fishing effort). However, for many
problems this distinction is more apparent than real. I consider the

case where the fishing effort of the j users in period t, e = (et, ceey

gi) is normalized by what is usually called a "catchability coefficient,”

.so that they lie in [0, 1].and are additive, Moreover, assume the

return to each user can be expressed as a function of the catch to each
user, gi, k=1, ..., J and that:
(v) each gi satisfies assumptions (i) - (iii) as a function of the

catch to user 1

(vi) total catch is a function of effort through total effort only.

(vii) catch to each user is proportional to:

i
e

L

e
L=1

X + (total catch)
7 _

(viil) total catch is a continuous function of effort, nondecreasing in

initial population size x for fixed effort, and nondecreasing in

‘{  total effort for fixed initial population size.

——

Assumptions (v) —.(viii) relating catch to effort satisfy most
of the standard catch and effort models, such as in Anderson (1975} or

Ricker (1975). To solve the effort allocation meodel, I show that it is
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only necessary to show that any feasible catch allocation has a reiated
feasible effort allocation. Otherwise, as_sumption {v) assures ;:.hat the
problems are the same.

Let zl, z2 be the allocated catch. Then it is necessary that:

: L
(total catch at e ez) = z

€2 2
(total catch at T ez) =z

el+ee2

Let wl = el, and wz = el + ez. '].‘h'en-by asgumption (vi) total
catch is a function of wz only, call it Tc(wz). Thus given total catch,

total effort is fixed also. The equations become

.
;l (TC(w?)) = z*
2
w
1 - X (TeD)) = 22
Y2 :

TC(wz) s wz fixed; zl + 32 = 'I'C(wz)

This implies:

2 2
wl 22 (_w_z___) = (TC(wz) - z]') (w_2> .
TC(w ) TC(w")

since z2 + 2z TC(wZ) it implies:

! zz( W )_zz( o )
z]'+z2 zl+22
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so that any feasible allocation (zl, zz) has a related, feasible allocation
(wl, wz) (or (el, ez)). Thus if assumption {v) - (viii) are valid, solving

the catch allocation model solves the effort allocation model.

Othe; problems certainly can be approached this way. The.
proofs depend on- concavity assumptions, simple comstraints (upper and
lower bounds) and the recursive formulation of the vector maximization
problem: It should be no problem to analyze in a similar manner, for
eﬁample, the p;oblem where unit price is a function of total catch, so

that the return is
pi(Zzi) .zt
i

where pi is a continuous, nonincreasing function, by using dynamic
programming to first find the optimal total and then to find the optimal
allocation. Other extensions are clearly desirable and I hope to follow

up on them in a later paper. - - .

'IV. Discussion ' o

The models discussed in this paper are simplifications of any
true fishery. While this may be so,.for many fisheries, the data-does
not exist to completely estimate even the models discussed here. Random
variation in fish stocks is just beginning to be analyzéd, and represents
a significant change in our thinking, and hopefully in our policies.

The results presented here should be used first and foremost to gain
;nsight and knowledge in determining an optimal policy. It may happen,
Epat after reflection -and scrutiny, the calculated policy is used as the
actual'policy-—but 1 believe this reflection and scrutiny based dn our

past experience and knowledge cannot be dispensed with.
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The results presented here serve another purpose also.' Though
the exact numbers might be off, they focus the essential areas of con-
flict in settings relevant to the councils and the FCMA. Too often such

bodies spend a lot of time on unfocused debate on points which while

their objectives:might differ, do mot affect policy in any significant

way. By pinpointing the crucial areas where policy is im conmflict, and
by suggesting several reasonable. policies to consider at a first pass,
Pareto optimal policies provide a-focused starting point for council .
deiliberations on OY. |

" 7Jhe results here are encouraging in that finding the set of
Pareto optimal policies are no more difficulﬁ than solving the single-
objective optimization problems. While we cannot expect such simple
results as our models for fishery mapagement become more complex, the
fact that the highly-structured nature of optimal policies is retained
in the vector maximum problem, and that the known policies help
determined the Pareto policies bodes well for future research in this
area. In é subsequent paper, similar techniques will bg used fo analyze

problems where harvesting gain is traded off against increased risk of

undesirable events.
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APPENDIX !

This Appendix contains the proofs of the various theorems. When
there are two separate theorems for k = 2 and k > 2 they are proven
together. -

Some additional nqtation is needed. Let Vt(G‘Ht) be the
(vector) expected value of following a policy § given the history Ht up
to time t. Equivalent to maximizing the weighted sum:

§ at-l(Zligi(xt, z,))
t=1 i

is a dynamic programming problem given by:

Ay o
£() 20
A(x) = max {Eligi(x, 8) +aE £ (s[x-—izi, d])}

where f%(-) denotes the dependence on a fixed value of A.

-

Finally, I assume the k single objective policy functions w

zi(x), zi(x), - zE(x) are lmouwn. For discussion purpcses, I assume

for fixed x, zi is the minimum of these k numbers and zi is the maximum

of the k numbers. Associate with these are a dynamic programming

" problem denoted by

fi(x), fi(x) respectively, for each n.
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Theorem 2.1 Part (i). At period t, the value of the history
vector
Ht is a constant/, call it w. Let dbe a dominated policy from period t
onwards, and 61 an efficient policy. Then the total expected wvalue at

period 1 following the different policies is:
v“'('ﬁllu ) +w; vV (5|8) +w
t t e - t

The difference is Vi(ﬁllﬂt) - Vt(6|Ht)~Z 0, so no nonefficient policy
from period t onward can be efficient at period one.

Part (ii) is proven by a simple inductive proof, using part

(1) and the independence of Dl’ ey DT to show that:

vtcslnt) = vt(ﬁlxt)
g

Corollary 2.1 Tmmediate consequence of theorem 2.1 énd standard

dynamic programming arguments.

£

Note that in corollary 2.1 the theorem is to follow some, not

-

any, Pareto optimal ﬁolicy. Therefore, in checking efficiency of soﬁé_
decision z, it must be tried with all possible values of fﬁfi before
ruling it out as dominated. However, if z can be shown to be efficient
at period o by some other means, then it is Pareto optimal to ch&ose_ggz
_efficient policy in périod n-1. | |

Lenma A is a restatement of a well known theorem. A proof can

be found in Kuhn and Tucker (1951), or Karlin (1959) or Geoffrion (1967).
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Lemma A Let G map a subset of R into Rk, k > j, with component

function gi, i=1, ..., k. If each gi is concave, and the constraints

satisfy the Kuhn-Tucker constraint qualifications, then the following are

equivalent:

(1) z+ e R} is a solution to vmax G
(11) z+ £ Rj is a solution to:

k
max I Xigi -
i=1

k

s.t. £ At=1;0<at<1foram
i=1

for some value of A = (Al,....,.lk).

For what follows, I assume that the single objective policy
functions exist, and that at least one Pareto optimal policy exists.

Given assumptions (i)-(iv) and the convexity of the set C, this 1s a

very mild assumption.

!

Theoxrem 3.1 -To prove the theorem, it is sufficient to prove

part (i), as part (ii) follows from part (i) and theorem 2.1

Part (i) is provem for k = 2. For k > 2, assume it is true

for i = k—-1. Combine k-1 of the objective functions into ome.
new objective function satisfies assumptions (i) - Iiii). Moreover,

by induction, its optimal policy function for each x and n must lie

This

between the largest and smailest of the k-1 single objective optimal

policy functions. The result for i = 2 then proves the result for

i= k.
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It is convenient to use instead of A, 1~ A as the weighting,
to use instead 1, li—l--as the weights, where'% as a welight implies it is

the sole objective considered. Let u = lil on [0, ©]. Each objective
obtains its highest expected return at one of the extreﬁés. Therefore,
it is sufficient to show that the optimal z is monotone and continuously
varying (when it changes) as a function u. However, the monotonicity
follows from lemma 7 in Geoffrion (1967) since our "overall utility" is

trivially quasiconcave, Vﬁ is concave, and the upper and lower bounds

on z are constant as z varies. ' E]

Theorem 3.2 The equivalence of the equitable and minimum total
regret policies can be seen from the equivalence of minimizing total regret
to:

max L Vhi(ﬁlx).
§ 4

However, the equitable policy by definition is the policy which maximizes-

the total even-weighted expected value.

The equivalence with the Chebyshev optiﬁal policy follows ~
from Zangwill (1967). Zangwill proves that if the k Function g,
{=1, ..., k are concave, then necessary and sufficient conditions

for a Chebyshev optimum are:

k
z ii
i=1Vg(x)-wi=0 wiZO
z wi >0

:_. . i
For the problem of this theorem, these are equivalent to the
Kuhn-Tucker conditions for even weighting of the k objectives, which

proves thg equivalence of the Chebyshev optimal and equitable policies.
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Theorem 3.3 This theorem is proven using a result of Karush

(1959), successfully used by Veinott (1966). I assume the problem has
h

a unique solution for each A. Let wl - zl, w2 = zz, veny uj = I zj.
i=1
Consider Jﬁ(x, z), and substitute in for z. Then:
A i i .
£ = max : alg (1+1-w)+aﬁf (s[x—w , 4D}
o<wl<w? i=1
<wI<y
k‘1~£wk < x

. The desired result is to show that the problem can be divided into a
dyna;ic recursion involving only wk, and a simple, static allocation
problem given wk. The proof is for k = 2, The proof k>2 is by
inducting on k. Assume the theorem.is true at k-—l.- Combine the k-1
objectives into one single objective (weighted combination when.appro-

" priate). Then the result at k = 2 implies the result at k.
For fixed (A, wz), let A(wz) be the solution to:
max a2 - wh + (1 - N gheh

Then the total return is lgz(w2 - A(wz)) + {1 -23) gl(A(wz)) which is a

function solely of wz. The dynamic recursion then is:

ey = ™ g2 (2 - AG) + (1 - A) gHAGD)) +oBE  (sTx - w?, an}
n D <w <x

2
which depends only on wz. Thus, given any w in period n, the value of

. 2 :
wl(ignoring the trivial case A\ = 0 ot 1) is either zerc, w or the point

where:
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2”2 -
At @ - wh = @ - gl
which proves part (ii) of the theorem.

Again, change the weightings by aliowing the First objective

to be weighted by. 1, and the second objective by -]—"l-:-;-t-. As in theorem

3.1, it is sufficient to show that an optimal wz is monotone in u in

order to prove the theorem.

' 021 )
As an induction hypothesis, assume % J:i (x, wz) isg

nondecreasing' for wz < ztz‘(x). At period 2:

[2] - -
=T ) =gk D) - (slx - vl s x- w2, an)

so that the hypothesis is trivially true at period 2. This implies:

2 £ 0 = ¥ 62

unless zz(x) is at the bound_éry, so that since zz(x) increases with u,

oy

'gu- :‘."2l is decreasing in u.

At pericd n:

S W AR Wl O TR w{fﬁ_lcg[x-wz, aDsix - W2, d]}

The second term is decreasing in u, which implies that an optimal wz must
‘ : 2]
increase with u, whichk in turn implies that a—au- .Iz (=, wz) is non-

dgcreasing for w2 < zlzl(x) .

To complete the induction, unless the optimal z is x,

a - ’ -
T f: (x) = 32 (Wi(x)). which again decreases withu.
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Theorem 3.4 The equivalence of the minimum total regreg‘and the
equitable policies is implied by the fact that minimizing total regret is.
the same as maximizing total unweighted return. Theorem 3.3 implies that
- the result can be put in terms of a single decision variable wz, and the

expected return to each objective is (for k = 2):

T T
e 1 oflgawd) =2 & o ted)
=1 ~ e=1 t

. |
'EZatlz( A(w))=-1zza"1.12(w)

i t-l
Thus wa are back in the one decision variable case as in theorem 3.2, which

implies the equivalence of the minimize the maximum regret policy.

1




FCMA -
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T -
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gi(x, a) -
Dt -
i —
e
CH -
E -
R
gfx- 2 zj
i=1
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GLOSSARY AND NOTATION

The Fishery Conservation and Management Act of 1976
(Public Law 94-265)

optimum yield

the'hhmber of period in the planning horizon

subscripte the period

equal to T-t+1, subscripts the number of periods remaining
in the planning horizon

stock size at the beginning of period t

harvest of user 1 during period t

(zt, cras zi)

number of users

number of total objective functioms, k > j

one pefiod.return to user i given (x, 2)

(g (x, B, ..., g5x, 2))

independent random variable distributed as generic rﬁndom
variable D |

fishing effort of user 1

(ei, cvey ei) : _ ' '

conditional expectation

, Dt] ~ population dynamics (transition function) with
~ catch as decision variable
- transition function when effort is decision

variable
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fi(x)
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. . \\
the history up to period t (a feasible sequence of states
and decisions)

vector maximization (efficient set solutions)

expected vector-value of following some efficient policy
from period n onwards when the state is x
derivative

gradient, with elements v'e

gradient. with respect to the 1th vector argument
discount.factor; 0<a<l

set of all possible states

set of possible states and decisions, i.e.

c={(x, 8) : x £ X3 Ezilggx,zi

i

> 0}

optimal policy function in period n for objective i when

it 1s the sole objective, i = 1, ..., K
optimal effort policy function for objective i, i=1, ..., k

the vector of expected values in period t of following policy

§ given the history is A,

total expected value of an optimal policy in period n, given
state x, and a convex combination of the k objectives
given by A

fi(x) as a function of A

total expected value of an optimal policy in period n, given
state x, when objective 1 is the sole objective

4 i
either I zi or L ei

depending on the context.
k=1 k=1 ’




